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Combined constraints from the CDF and D0 Collaborations on models of the Higgs boson with
exotic spin J and parity P are presented and compared with results obtained assuming the standard
model value JP = 0+. Both collaborations analyzed approximately 10 fb−1 of proton-antiproton
collisions with a center-of-mass energy of 1.96 TeV collected at the Fermilab Tevatron. Two models
predicting exotic Higgs bosons with JP = 0− and JP = 2+ are tested. The kinematic properties of
exotic Higgs boson production in association with a vector boson differ from those predicted for the
standard model Higgs boson. Upper limits at the 95% credibility level on the production rates of
the exotic Higgs bosons, expressed as fractions of the standard model Higgs boson production rate,
are set at 0.36 for both the JP = 0− hypothesis and the JP = 2+ hypothesis. If the production
rate times the branching ratio to a bottom-antibottom pair is the same as that predicted for the
standard model Higgs boson, then the exotic bosons are excluded with significances of 5.0 standard
deviations and 4.9 standard deviations for the JP = 0− and JP = 2+ hypotheses, respectively.

PACS numbers: 13.85.Rm, 14.80.Bn, 14.80.Ec

The Higgs boson discovered by the ATLAS [1] and
CMS [2] Collaborations in 2012 using data produced in
proton-proton collisions at the Large Hadron Collider
(LHC) at CERN allows many stringent tests of the elec-
troweak symmetry breaking in the standard model (SM)
and extensions to the SM to be performed. To date,
measurements of the Higgs boson’s mass and width [3–
6], its couplings to other particles [3, 7–11], and its spin
and parity quantum numbers J and P [10–15] are consis-
tent with the expectations for the SM Higgs boson. The
CDF and D0 Collaborations at the Fermilab Tevatron

observed a 3.0 standard deviation (s.d.) excess of events
consistent with a Higgs boson signal, largely driven by
those channels sensitive to the decay of the Higgs boson
to bottom quarks (H → bb̄) [16, 17]. The Tevatron data
are also consistent with the predictions for the properties
of the SM Higgs boson [17–21].

Ref. [22] proposed to use the Tevatron data to test
models for the Higgs boson with exotic spin and parity,
using events in which the exotic Higgs boson X is pro-
duced in association with a W or a Z boson and decays to
a bottom-antibottom quark pair, X → bb̄. This proposal
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used two of the spin and parity models in Ref. [23], one
with a pseudoscalar JP = 0− state and the other with
a graviton-like JP = 2+ state. For the SM Higgs bo-
son, which has JP = 0+, the differential production rate
near threshold is linear in β, where β = 2p/

√
ŝ, p is the

momentum of the X boson in the VX (V = W or Z) ref-
erence frame, and

√
ŝ is the total energy of the VX system

in its rest frame. For the pseudoscalar model, the depen-
dence is proportional to β3. For the graviton-like model,
the dependence is proportional to β5; however, not all
JP = 2+ models share this β5 factor [22]. These powers
of β alter the kinematic distributions of the observable
decay products of the vector boson and the Higgs-like
boson X , most notably the invariant mass of the VX

system, which has a higher average value in the JP = 0−

hypothesis than in the SM 0+ case, and higher still in
the JP = 2+ hypothesis. These models predict neither
the production rates nor the decay branching fractions of
the X particles.

The ATLAS and CMS Collaborations recently re-
ported strong evidence for Higgs boson decays to
fermions [24–29], with sensitivity dominated by the H →
τ+τ− decay mode, though they have not yet performed
spin and parity tests using fermionic decays. The par-
ticle decaying fermionically for which the Tevatron also
found evidence might not be the same as the particle dis-
covered through its bosonic decays at the LHC. Tests of
the spin and parity [22] with Tevatron data therefore
provide unique information on the identity and prop-
erties of the new particle or particles. The CDF and
D0 Collaborations have re-optimized their SM Higgs bo-
son searches to test the exotic Higgs boson models in
the WH → ℓνbb̄ [30, 31], ZH → ℓ+ℓ−bb̄ [32, 33], and
WH + ZH → E/T bb̄ [34, 35] channels, where ℓ = e or µ
and E/T is the missing transverse energy [36]. In this let-
ter we report a combination of the CDF [20] and D0 [21]
studies of the JP assignments of the state X , with mass
mX = 125 GeV/c2, in the X → bb̄ decay.

The CDF and D0 detectors are multipurpose solenoidal
spectrometers surrounded by hermetic calorimeters and
muon detectors designed to study the products of 1.96
TeV proton-antiproton (pp̄) collisions [37, 38]. All
searches combined here use the complete Tevatron data
sample, which, after data quality requirements, corre-
sponds to 9.45 – 9.7 fb−1 of integrated luminosity, de-
pending on the experiment and the search channel.

Standard model Higgs boson signal events are sim-
ulated using the leading-order (LO) calculation from
pythia [39], with CTEQ5L (CDF) and CTEQ6L1
(D0) [40] parton distribution functions (PDFs). The
JP = 0− and JP = 2+ signal samples are generated
using madgraph 5 version 1.4.8.4 [41], with modifica-
tions provided by the authors of Ref. [22]. Subsequent
particle showering is modeled by pythia. We normalize
the SM Higgs boson rate predictions to the highest-order
calculations available. The WH and ZH cross sections are

calculated at next-to-next-to-leading-order (NNLO) pre-
cision in the strong interaction, and next-to-leading-order
(NLO) precision in the electroweak corrections [42–45].
We use the branching fractions for Higgs boson decay
from Ref. [46]. These rely on calculations using hde-

cay [47] and prophecy4f [48].

The predictions of the dominant background rates and
kinematic distributions are treated in the following way.
Diboson (WW, WZ, and ZZ) Monte Carlo (MC) sam-
ples are normalized using the NLO calculations from
mcfm [49]. For tt̄, we use a production cross section of
7.04 ± 0.70 pb [50], which is based on a top quark mass
of 173 GeV/c2 [51] and MSTW 2008 NNLO PDFs [52].
The single top quark production cross section is assumed
to be 3.15 ± 0.31 pb [53]. For details of the generators
used, see Ref. [54]. Data-driven methods are used to nor-
malize the V plus light-flavor and heavy-flavor jet back-
grounds [59] using V data events containing no b-tagged
jets [60], which have negligible signal content [61, 62].
The MC modeling of the kinematic distributions of the
background predictions is described in Refs. [30–35].

The event selections are similar (CDF), or identical
(D0), to those used in their SM counterparts [30–35].
For the WH → ℓνbb̄ analyses, events are selected with
one identified lepton (e or µ), jets, and large E/T . For
the CDF WH → ℓνbb̄ analysis, only events with two jets
are used. Events are classified into separate categories
based on the quality of the identified lepton. Separate
categories are used for events with a high-quality muon
or central electron candidate, an isolated track, or a for-
ward electron candidate. Within the lepton categories,
five exclusive b-tag categories, comprising two single-tag
and three double-tag categories, are formed. The mul-
tivariate b-tagger used by CDF [63] was trained on SM
Higgs boson signal MC events. Few of these events con-
tained jets with with transverse energy ET > 200 GeV
and thus the tagger does not perform well for such jets.
Hence, only jets with ET < 200 GeV are considered. For
the D0 WH → ℓνbb̄ analysis, events are selected with
two or three jets. The data are split by lepton flavor
and jet multiplicity (two or three jet subchannels), and
by the output of the b-tagging algorithm applied to all
selected jets in the event. This channel, along with the
other two D0 channels, uses a multivariate b-tagging al-
gorithm [64, 65]. Four exclusive b-tag categories, one
single-tag and three double-tag, are formed. In the SM
Higgs boson search, boosted decision trees are used as
the final discriminating variables; here they are used to
further subdivide the selected data sample into high- and
low-purity categories.

The ZH → ℓ+ℓ−bb̄ analyses require two isolated lep-
tons and at least two jets. The CDF analysis separates
events into one single- and three double-b-tag samples
and uses neural networks to select loose dielectron and
dimuon candidates. The jet energies are corrected for
E/T using a neural network [66]. The CDF analysis uses
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a multistep discriminant based on neural networks, where
two discriminant functions are used to define three sep-
arate regions of the final discriminant function. The
D0 ZH → ℓ+ℓ−bb̄ analysis separates events into non-
overlapping samples of events with either a single or dou-
ble b-tag. To increase the signal acceptance, the selection
criteria for one of the leptons are loosened to include iso-
lated tracks not reconstructed in the muon detector and
electron candidates from the intercryostat region of the
D0 detector. Combined with the dielectron and dimuon
categories, these provide four independent lepton sub-
channels. A kinematic fit is used to optimize reconstruc-
tion. Random forests (RF) of decision trees [67, 68] are
used to provide the final variables in the SM Higgs boson
search. The first RF is designed to discriminate against tt̄
events and divides events into tt̄-enriched and tt̄-depleted
single-tag and double-tag regions. Only events in the
tt̄-depleted regions are considered in this study. These
regions contain approximately 94% of the SM signal.

For the ZH → νν̄bb̄ analyses, the selections used by
CDF and D0 are similar to the WH selections, except
that all events with isolated leptons are rejected and more
stringent techniques are applied to reject the multijet
background. In a sizable fraction of WH → ℓνbb̄ sig-
nal events, the lepton is undetected. Such events often
are selected in the ZH → νν̄bb̄ samples, so these analyses
are also referred to as V H → E/T bb̄. The CDF analysis
uses three non-overlapping b-tag categories (two double-
and one single-tag) and two jet categories (two- or three-
jet events), giving a total of six subchannels. In the D0
analysis, exactly two jets are required and two exclusive
double-tag categories are defined using the sum of the
b-tagging outputs for each of the two selected jets.

Both CDF and D0 have a 50% larger acceptance for the
JP = 0− and JP = 2+ signals in the ZH → νν̄bb̄ analyses
compared with the SM Higgs boson signal, largely due
to the fact that the exotic signal events are more likely
to pass the trigger thresholds for E/T , a consequence of
the larger average V X invariant masses. The other two
channels, WH → ℓνbb̄ and ZH → ℓ+ℓ−bb̄, do not benefit
as much from the additional E/T in these events, as they
rely on the lepton triggers, which are more efficient than
the E/T triggers in the relevant kinematic regions.

Unlike their SM counterparts, these analyses are op-
timized to distinguish the JP = 0− and the JP = 2+

hypotheses from the SM 0+ hypothesis. The exotic par-
ticles are considered either in addition to, or replacing,
the SM Higgs boson. A mixture of all three states is not
considered.

The CDF multivariate analysis (MVA) discriminants
were newly trained to separate the exotic Higgs boson
signals from the SM backgrounds [20]. In the WH →
ℓνbb̄ and V H → E/T bb̄ channels, events classified as
background-like by the new discriminants are then clas-
sified according to the SM-optimized MVA discriminants
in order to improve the performance of tests between the

SM and exotic hypotheses.

Depending on the channel, D0 uses either the recon-
structed dijet mass or the MVA used in the SM Higgs bo-
son search to separate events into high- and low-purity
samples. The mass of the VX system is then used to
discriminate between the exotic and SM hypotheses [21].
For the ZH → ℓℓbb̄ analysis the invariant mass of the two
leptons and the two highest pT jets is used. For the ℓνbb̄
and ννbb̄ final states the transverse mass MT is used,
where M2

T = (EV
T + EX

T )2 − (~pV
T + ~pX

T )2 and the trans-
verse momenta of the Z and W bosons are taken to be
~pZ

T = ~6ET and ~pW
T = ~6ET + ~pℓ

T , respectively.

The number of contributing channels is large, and their
sensitivities vary from one to another. To visualize the
data in a way that emphasizes the sensitivity to the ex-
otic signals, we follow Ref. [17]. Bins of the final discrim-
inant for all channels are ordered by increasing signal-
to-background ratio (s/b) and are shown in comparison
with predicted yields from signal and background pro-
cesses for the JP = 0− and JP = 2+ searches in Fig. 1
separately. The backgrounds are fit to the data in each
case, allowing the systematic uncertainties to vary within
their a priori constraints. The exotic signals are normal-
ized to the SM cross section times branching ratio mul-
tiplied by an exotic-signal scaling factor, µexotic. They
are shown in Fig. 1 with µexotic = 1. The scaling fac-
tor for the SM Higgs boson signal is denoted by µSM. A
value of one for either µSM or µexotic corresponds to a
cross section times branching ratio as predicted for the
SM Higgs boson. Both figures show agreement between
the background predictions and the observed data over
five orders of magnitude with no evidence for an excess
of exotic signal-like candidates.

We follow Ref. [17] and perform both Bayesian and
modified frequentist calculations of the upper limits on
exotic X boson production with and without SM Higgs
production, best-fit cross sections allowing for the simul-
taneous presence of a SM Higgs boson and an exotic X
boson, and hypothesis tests for signals assuming various
production rate times branching ratio values for the ex-
otic bosons. Both methods use likelihood calculations
based on Poisson probabilities that include SM back-
ground processes and signal predictions for the SM Higgs
and exotic bosons multiplied by their respective scaling
factors, µSM and µexotic. Systematic uncertainties on the
predicted rates and on the shapes of the distributions and
their correlations are treated as described in Ref. [17].
Theoretical uncertainties in cross sections and branching
ratios are considered fully correlated between CDF and
D0, and between analysis samples. The uncertainties on
the measurements of the integrated luminosities, which
are used to normalize the expected signal yields and the
MC-based background rates, are 6.0% (CDF) and 6.1%
(D0). Of these values, 4% arises from the inelastic pp̄
cross section [69], which is fully correlated between CDF
and D0. The dominant uncertainties on the backgrounds
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FIG. 1: (color online). Distribution of log10(s/b) for CDF
and D0 data from all contributing search channels, for (a) the
JP = 0− search and (b) the JP = 2+ search. The data are
shown with points, and the expected exotic signals are shown
with µexotic = 1 stacked on top of the fitted backgrounds. The
solid lines denote the predictions for the SM Higgs boson, and
are not stacked. Underflows and overflows are collected into
the leftmost and rightmost bins, respectively.

are constrained by the data in low s/b regions of the
discriminant distributions. Different methods were used
by CDF and D0 to estimate V +jets and multijet back-
grounds and so their uncertainties are considered uncor-
related. Similarly, the uncertainties on the data-driven
estimates of the b-tag efficiencies are considered uncorre-
lated between CDF and D0, as are the uncertainties on
the jet energy scales, the trigger efficiencies, and lepton
identification efficiencies. We quote Bayesian upper lim-
its and best-fit cross sections assuming uniform priors for
non-negative signal cross sections, and we use the modi-
fied frequentist method to perform the hypothesis tests.
Systematic uncertainties are parameterized by nuisance

parameters with Gaussian priors, truncated so that no
predicted yield for any process in any search channel is
negative.

For both the JP = 0− and JP = 2+ models, we com-
pute two 95% credibility upper limits on µexotic, one as-
suming µSM = 1 and the other assuming µSM = 0. The
expected limits are the median expectations assuming
no exotic boson is present. The results are listed in Ta-
ble I. Two-dimensional credibility regions, which are the
smallest regions containing 68% and 95% of the poste-
rior probabilities, are shown in Fig. 2. The points in the
(µSM, µexotic) planes that maximize the posterior prob-
ability densities are shown as the best-fit values. These
best-fit values are (µSM=1.0, µ0− = 0) for the search
for the JP = 0− state, and (µSM=1.1, µ2+ = 0) for the
search for the JP = 2+ state. We also derive upper limits
on the fraction fJP = µexotic/(µexotic+µSM), as functions
of the total µ = µexotic + µSM, assuming a uniform prior
probability density in non-negative fJP , extended to in-
clude fractions larger than 1.0 in order not to saturate
the limits at fJP = 0.95 for µ < 0.6, where the test is
weak. The results are shown in Fig. 3.

In the modified frequentist approach [70, 71] we com-
pute p values for the discrete two-hypothesis tests,
the SM Higgs boson hypothesis (the “null” hypothe-
sis) (µSM=1, µexotic=0) and the exotic (“test”) hypoth-
esis (µSM=0, µexotic=1), both assuming that SM back-
ground processes are present. We use the log-likelihood
ratio, LLR, defined to be −2 ln(p(data|test)/p(data|null),
where the numerator and denominator are maximized
over systematic uncertainty variations [17]. The LLR dis-
tributions are shown in the supplemental material [72].
We define the p values pnull = P (LLR ≤ LLRobs|SM) and
ptest = P (LLR ≥ LLRobs|exotic). The median expected
p values pexotic

null,med in the test hypothesis and pSM
test,med in

the SM hypothesis quantify the sensitivities of the two-
hypothesis tests for exclusion and discovery, respectively.
Table II lists these p values for both exotic models, as
well as CLs = ptest/(1− pnull) [70] for the Tevatron com-
bination. To compute ptest and the expected values of
pnull and ptest, Wilks’s theorem is used [73].

The similarity of the limits and p values obtained for
the JP = 0− and the JP = 2+ searches is expected since
the exotic models predict excesses in similar portions of
kinematic space.

In summary, we combine CDF’s and D0’s tests for the
presence of a pseudoscalar Higgs boson with JP = 0−

and a graviton-like boson with JP = 2+ in the WX →
ℓνbb̄, the ZX → ℓ+ℓ−bb̄, and the VX → E/T bb̄ search
channels using models described in Ref. [22]. The masses
of the exotic bosons are assumed to be 125 GeV/c2. No
evidence is seen for either exotic particle, either in place
of the SM Higgs boson or produced in a mixture with a
JP = 0+ Higgs boson. In both searches, the best-fit cross
section times the decay branching ratio into a bottom-
antibottom quark pair of a JP = 0+ signal component
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TABLE I: Observed and median expected Bayesian upper
limits at the 95% credibility level on µexotic for the pseu-
doscalar (JP = 0−) and graviton-like (JP = 2+) boson mod-
els, assuming either that the SM Higgs boson is also present
(µSM = 1) or absent (µSM = 0).

Channel Observed Median Expected
(Limit/σSM ) (Limit/σSM )

JP = 0−, µSM = 0 0.36 0.32
JP = 0−, µSM = 1 0.29 0.32
JP = 2+, µSM = 0 0.36 0.33
JP = 2+, µSM = 1 0.31 0.34

TABLE II: Observed (obs) and median expected (med) LLR
values and p values for the combined CDF and D0 searches
for the pseudoscalar (JP = 0−) boson and the graviton-like
(JP = 2+) boson. The p values are listed, and the corre-
sponding significances in units of standard deviations, using
a one-sided Gaussian tail calculation, are given in parenthe-
ses.

Analysis JP = 0− JP = 2+

LLRobs 27.1 25.7

LLRSM
med 23.7 21.8

LLRexotic
med −29.9 −29.6

pnull 0.63 (−0.34) 0.66 (−0.41)

pexotic
null,med 1.8×10−8 (5.5) 1.9×10−8 (5.5)

ptest 9.4×10−8 (5.2) 1.9×10−7 (5.1)

pSM
test,med 4.7×10−7 (4.9) 1.2×10−6 (4.7)

CLs 2.6×10−7 (5.0) 5.6×10−7 (4.9)

CLSM
s,med 9.4×10−7 (4.8) 2.3×10−6 (4.6)

is consistent with the prediction of the SM Higgs boson.
The Bayesian posterior probability densities for the JP =
0− and JP = 2+ searches are shown in Ref. [72].

Upper limits at 95% credibility on the rate of the pro-
duction of an exotic Higgs boson in the absence of a SM
JP = 0+ signal are set at 0.36 times the SM Higgs pro-
duction rate for both the JP = 0− and the JP = 2+

hypotheses. If the production rate of the hypothetical
exotic particle times its branching ratio to a bottom-
antibottom quark pair is the same as that predicted for
the SM Higgs boson, then the exotic models are excluded
with significances of 5.0 s.d. and 4.9 s.d. for the JP = 0−

and JP = 2+ hypotheses, respectively.
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FIG. 4: Posterior probability density distributions for the combined searches for exotic JP = 0− and JP = 2+ bosons. (a)
The posterior probability density as a function of µ0− assuming µSM = 1 and a uniform prior density for non-negative µ0− ,
(b) the posterior probability density as a function of µ0− assuming µSM = 0 and a uniform density for non-negative µ0− ,
and (c) the posterior probability density as a function of the fraction of exotic boson production, µ0−/(µ0− + µSM), assuming
µ0− + µSM = 1, and a uniform prior density for non-negative values of the fraction. The dashed vertical lines indicate the
observed limits. Figures (d), (e), and (f) show the corresponding results for the JP = 2+ boson searches.
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FIG. 5: Distributions of LLR for the combined CDF and D0 searches for (a) the pseudoscalar (JP = 0−) boson, and (b) the
graviton-like (JP = 2+) boson. The LLR distributions are shown separately assuming that an exotic particle is present with
µexotic = 1 plus SM backgrounds, and if the SM Higgs boson plus SM backgrounds are present. The observed values of LLR
are shown with vertical lines. Shaded regions show the 68% and 95% confidence level regions on the distributions assuming the
SM Higgs boson is present, centered on the median expectation.


